Optimization of MBE grown GaInP for tandem cell use

Amadéo Michaud1,3, Ahmed Ben Slimane2 Thomas Bidaud3, Ludovic Largeau3, Jara Fernandez Martin1, Stéphane Collin2,3, Jean-Christophe Harmand2

(1) Total, New Energies, Ecole Polytechnique-IPVF, 30 route départementale, 91128, Palaiseau, France
(2) Institut photovoltaïque d’Ile de France – IPVF 30 route départementale, 91128, Palaiseau, France
(3) Centre de Nanosciences et de Nanotechnologies-C2N, route de Nozay, 91460, Marcoussis, France

Gallium Indium Phosphide (GaInP) is widely used as a top junction in multi-junction solar cells, it also allows to assemble some of the best III-V/Si tandem solar cells [1]. While designing solar cells, most of the attention goes to the cell’s structure optimization, but growth aspect cannot be neglected in the case of GaInP.

In certain growth conditions GaInP tends to arrange in Gallium rich and Indium rich plans. This superlattice like behavior, called ordering impacts the alloy properties. GaInP grown lattice matched to Gallium Arsenide (GaAs) with bandgap from 1.83 eV to 2 eV were reported [2]. Carrier lifetimes variation and diffusion anisotropy [3] are two other consequences. Therefore substantial care on the growth environment is required to provide a good photovoltaic material.

In this work we highlight how the growth conditions impact the quality of our MBE grown GaInP by means of photoluminescence and time-resolved cathodoluminescence. A bandgap variation of 96 meV was obtained while varying growth temperature and phosphorus pressure. Scanning Transmission electron microscopy (STEM) confirmed the local composition variation for certain conditions. Then we emphasize that optimization of the epitaxy chamber is still needed in order to catch up with state of art cells. Thus our cells suffer from low lifetimes and mobilities in the p-doped base layer.

![Figure 1: a) GaInP bandgap variation with growth temperature and phosphorus pressure, STEM images showing b) homogenous material in condition 1 c) partially ordered material in condition 2](image1)

![Figure 2: EQE of our best GaInP cell, insert EQE of a 16.4% efficient GaInP cell [4] emphazing the progresses needed in the base](image2)

![Figure 3: Comparison of lifetimes and PV conversion efficiencies of GaInP from different labs and epitaxy techniques](image3)

[1] Stephanie Essig, Christophe Allibè, Timothy Remo “Raising the one-sun conversion efficiency of III-V/Si solar cells to 32.8% for two junctions and 35.9% for three junctions” - NATURE ENERGY 2, 17144 (2017)

